Amino acid effects on translational repressor 4E-BP1 are mediated primarily by l-leucine in isolated adipocytes.
نویسندگان
چکیده
Previous studies indicated that amino acids may activate the protein kinase activity of the target of rapamycin (TOR) and thereby augment and/or mimic the effects of insulin on protein synthesis, p70S6k phosphorylation, and multicellular clustering in adipocytes. To identify the individual amino acids responsible for these effects, the present study focused on the TOR substrate and translational repressor 4E-BP1. A complete mixture of amino acids stimulated the phosphorylation of 4E-BP1, decreasing its association with eukaryotic initiation factor eIF-4E. Studies on subsets of amino acids and individual amino acids showed that l-leucine was the amino acid responsible for most of the effects on 4E-BP1 phosphorylation; however, the presence of other amino acids was required to observe a maximal effect. The stimulatory effect of leucine was stereospecific and not mimicked by other branched chain amino acids but was mimicked by the leucine metabolite α-ketoisocaproate (α-KIC). The effect of α-KIC, but not leucine, was attenuated by the transaminase inhibitor (aminooxy)acetate. The latter result indicates that the effects of α-KIC required its conversion to leucine. Half-maximal stimulation of 4E-BP1 phosphorylation occurred at ∼430 μM; therefore, the response was linear within the range of circulating concentrations of leucine found in various nutritional states.
منابع مشابه
Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation.
In this study, food-deprived (18 h) control rats and rats with alloxan-induced diabetes were orally administered saline or the amino acid leucine to assess whether it regulates protein synthesis independently of a change in serum insulin concentrations. Immediately after leucine administration, diabetic rats were infused with insulin (0.0, 4.0, or 20 pmol small middle dot min(-1) small middle d...
متن کاملTranslational Control of Entrainment and Synchrony of the Suprachiasmatic Circadian Clock by mTOR/4E-BP1 Signaling
Protein synthesis is critical for circadian clock function, but little is known of how translational regulation controls the master pacemaker in mammals, the suprachiasmatic nucleus (SCN). Here we demonstrate that the pivotal translational repressor, the eukaryotic translational initiation factor 4E binding protein 1 (4E-BP1), is rhythmically regulated via the mechanistic target of rapamycin (m...
متن کاملTargeting glutamine uptake in AML
Cancer cells require nutrients and energy to adapt to increased biosynthetic activity and depend on mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. Whereas they exhibit a pronounced Warburg effect, their TCA cycle remains intact and becomes more dependent on glutamine metabolism through glutaminolysis[1]. Besides this role, intracellular glutamine is also essential for mTORC1 a...
متن کاملNew insights into 4E-BP1-regulated translation in cancer progression and metastasis.
Remarkable progress has been made highlighting the importance of cap-dependent mRNA translation in cancer progression. 4E-BP1 is a translation initiation repressor by sequestering the mRNA cap-binding protein eIF4E and consequently inhibiting the translation of certain key oncogenic mRNAs encoding proteins for cell proliferation, survival, angiogenesis and malignancy. In most tumors, however, t...
متن کاملO-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle
Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 275 5 Pt 1 شماره
صفحات -
تاریخ انتشار 1998